Junior Cert

 Mathematics Grinds - Week 2Topic: Algebraic Expressions \& Equations

TuitionFarmie
Education is the key to success

Junior Cert Mathematics Grinds

Sound \& Visual Check

"I am now talking...."
"If you cannot hear me or see my screen please say "Cannot hear/see you" on the chat.

Algebraic Expressions \& Equations
Week 2:
ns \&
-

Junior Cert Mathematics Grinds

Week 2:

Algebraic Expressions \& Equations

Lesson Overview:

By the end of this lesson you should:

- Understand how to add, subtract, multiply and divide algebraic expressions.
- Understand how to solve linear equations with one variable.
- Know how to identify linear equations
- Know how to solve simultaneous linear equations with two unknown variables.
- Have the tools and knowledge to solve a wide range of problems involving linear equations.

Why do we need Algebra!?

- The use of Algebra in mathematics has evolved over centuries. It can be traced back to Ancient Babylonian and Egyptian times.
- Algebra enables us to solve a vast array of problems involving numbers and unknown variables. It is an essential skill for continuing in the field of Science, Technology, Engineering or Mathematics.

Why do we need algebra!?

- However, whatever career path you choose, you'll find that a good understanding of algebra will help you make many decisions regarding personal finances, including mortgage choice, bank savings accounts and phone plan choices.
- Being able to solve the types of equations we are looking at today will help you in the future make wise and informed choices regarding such matters.

- You need to get a new phone. The cheapest you have seen the phone sim-free is an upfront cost of $€ 250$. You have seen a sim-only phone plan for $€ 20$ per month that meets all your needs. Alternatively, you can get the phone on contract for $€ 100$ if you sign up to 24 months monthly line rental. What's the maximum monthly contract payment you would want to sign up to as not to spend more money over the 2 year period?

$$
\begin{aligned}
250+(24 \times 20) & =100+24 x \\
250+480 & -100=24 x \\
\frac{630}{24} & =x=€ 26.25
\end{aligned}
$$

Example 1:
$3\left(2 x^{2}+3 x-1\right)$

Example 4:
$(2 x+1)(3 x-2)$

Example 2:
$2 x(x+2)$

Example 5:
$(2 x+3)^{2}$

Example 3:

$(x+2)(x-3)$

- Example 1: $3\left(2 x^{2}+3 x-1\right) \rightarrow 6 x^{2}+9 x-3$

- Example 2: $2 x(x+2) \rightarrow 2 x^{2}+4 x$
- Example 3: $(x+2)(x-3) \rightarrow x^{2}-3 x+2 x-6 \rightarrow x^{2}-x-6$
- Example 4: $(2 x+1)(3 x-2) \rightarrow 6 x^{2}-4 x+3 x-2 \rightarrow 6 x^{2}-x-2$
- Example 5: $(2 x+3)^{2} \rightarrow(2 x+3)(2 x+3) \rightarrow 4 x^{2}+6 x+6 x+9$

$$
\rightarrow 4 x^{2}+12 x+9
$$

Dividing Algebraic Expressions

Example 1: Divide $6 x^{2}+11 x+3$ by $3 x+1$
Example 2: Simplify $\frac{6 x^{3}-26 x^{2}+32}{3 x-4}$

$$
3 x+1 \begin{array}{rr}
2 x+3 \\
\cline { 1 - 3 } & 6 x^{2}+11 x+3 \\
6 x^{2}+2 x \\
& 9 x+3 \\
9 x+3 \\
& 0
\end{array}
$$

$$
3 x - 4 \longdiv { 2 x ^ { 2 } - 6 x - 8 } \begin{array} { r }
{ 6 x ^ { 3 } - 2 6 x ^ { 2 } + 0 x + 3 2 } \\
{ 6 x ^ { 3 } - 8 x ^ { 2 } } \\
{ - 1 8 x ^ { 2 } + 0 x } \\
{ - (- 1 8 x ^ { 2 } + 2 4 x) } \\
{ - 2 4 x + 3 2 } \\
{ - (- 2 4 x + 3 2) } \\
{ 0 }
\end{array}
$$

Linear equations

- In linear equations, the variables (x, y, a, b etc...) will have a power of 1 (no x^{2}, x^{3}, etc...). Linear equations have two variables and they will form a straight line when plotted on a
 graph.
Here is an example: $2 y+3 x=12$
If we are told $\mathrm{x}=2$, we can work out y :

$$
\begin{gathered}
2 y+3(2)=12 \\
2 y=6 \\
y=3
\end{gathered}
$$

Simultaneous Equations

- Sometimes we will have two linear equations with the same two variables. We can solve these simultaneous equations to find values of both variables that will be correct for both equations.

$$
\begin{array}{cl}
2 x+3 y=12 & \\
\begin{array}{cl}
2 x+3 y=9 & \\
& \text { Here the } y \text { coefficient is } \\
\text { the same for each }
\end{array} \\
\begin{array}{cl}
3+3 y=6 & \\
3 y=3 & \\
y=1 & \\
\text { equation. We can } \\
\text { subtract one equation } \\
\text { from the other to find } x
\end{array} \\
&
\end{array}
$$

```
We then substitute x=3
into one of our equations
to find y
```


Simultaneous Equations

- Sometimes the coefficients for x or y will not be the same. In this case we will have to find a common multiple

$$
\begin{gathered}
x+2 y=1 \\
4 x+3 y=2
\end{gathered} \begin{array}{r}
4 x+8 y=4 \\
4 x+3 y=2 \\
\cline { 2 - 3 }=2 \\
y=\frac{2}{5}
\end{array}
$$

We then substitute $\mathrm{y}=\frac{2}{5}$
into one of our

$$
\text { equations to find } y
$$

$$
\begin{aligned}
& x+2\left(\frac{2}{5}\right)=1 \\
& x=1-\frac{4}{5}=\frac{1}{5}
\end{aligned}
$$

We can make the x coefficient for both equations 4 by multiplying the first equation by 4

Question 10 JC OL 2013 P1

(a) Find the values of the following expressions if $x=3$ and $y=5$.
(i) $5 x+4 y$

$5(3)+4(5)$																					
$(5 \times 3)+(4 \times 5)=15+20=35$																					

(ii) $x^{2}+y^{2}$

$3^{2}+5^{2}=9+25=34$																									

(b) (i) Multiply $5(3 a-4 b)$.

$(5 \times 3) \mathrm{a}+(5 \mathrm{x}-4) \mathrm{b}$																		

(ii) Multiply $x(x-y)+y(x+y)$. Write the answer in its simplest form.

(c) Divide $2 x^{3}+x^{2}-13 x+6$ by $x+3$.

JC HL 2013 P1 (d) A company employs two drivers, John and David. Each has use of a company car and small van. The company buys $€ 30$ worth of Toll Tags for each driver. Each time that a vehicle goes through the M50 Toll, a charge will be deducted from the Toll Tags.
John goes through the M50 toll five times in his car and four times in his small van. He then has $€ 7.90$ remaining on his Toll Tags. David goes through the M50 Toll twice in his car and six times in his small van. He then has $€ 8-40$ left on his Toll Tags.
Calculate how much it costs for a car and for a small van to go through the M50 Toll.

Question 12

(a) Simplify $(6 x-3)(2 x-1)$.

$$
\begin{gathered}
12 x^{2}-6 x-6 x+3 \\
12 x^{2}-12 x+3
\end{gathered}
$$

(b) Simplify $\left(3 x^{3}-2 x^{2}-3 x+2\right) \div(x-1)$.

JC HL 2014 P1

(c) (i) Solve the simultaneous equations:
 subtract this from second equation.
(ii) Verify your answer to (c)(i).

b) Add these two expressions: $2 x=0$
A) $x=2, x=3$
B) $x=2, x=-3$
C) $x=-2, x=3$
D) $x=-2, x=-3$
2) Factorise: $x^{2}+3 x-10$
$x^{2}+5 x-2 x-10 \rightarrow x(x+5)-2(x+5) \rightarrow(x+5)(x-2)$
3) Expand $(3 x+2)(2 x-3)$

$$
6 x^{2}-9 x+4 x-6 \rightarrow 6 x^{2}-5 x-6
$$

4) Which of these is an example of a quadratic binomial?
A) $3 x^{2}+2 x+1$
B) $5 x+3 y$
C) $6 x^{2}+3 x$
D) $4 x-5$
5) Solve the simultaneous equations:
$3 x+4 y=2$

$2 x+4 y=1$
$x \quad=1$,

$$
2(1)+4 y=1 \rightarrow 4 y=-1 \rightarrow y=-\frac{1}{4}
$$

Lesson Overview:

Junior Cert Mathematics Grinds

Week 2:
 Algebraic Expressions \& Equations

You should now:

- Understand how to multiply and divide algebraic expressions.
- Understand how to factorise algebraic expressions.
- Understand how to solve linear equations.
- Know how to identify linear and quadratic equations.
- Know how to solve quadratic equations using factorisation and the quadratic formula.
- Have the tools and knowledge to solve a wide range of problems involving linear and quadratic equations.

Next Weeks Lesson: Junior Cert Mathematics Grinds - Week 3

Topic: Factorising / Solving Quadratic Equations

TuitionFarmie
Education is the key to success

